| 
 Proceedings of International Conference on Applied Innovation in IT
 2025/07/26, Volume 13, Issue 3, pp.89-96
 
 Machine Learning Hyperparameters Optimization for Accurate Arabic Sentiment Classification
 Irwan Lakawa, Hujiyanto Hujiyanto and Abbas Oudah Waheed AlomairiAbstract: An improved model performance is achieved by optimizing hyperparameters for Arabic sentiment classification based on machine learning. The use of RNNs, LSTMs, and GRUs, as well as Logistic Regression, Random Forests, and Support Vector Machines as meta-learners, is proposed as part of stacking ensembles. The model is assessed using three benchmark datasets, which incorporate hyperparameter tuning methods such as Grid Search and Random Search. Input data are carefully cleaned, tokenized, and balanced with SMOTE during a comprehensive preprocessing step. The results of experiments show that hyperparameter optimization improves classification performance significantly, with the highest accuracy being achieved by Support Vector Machines and Ridge Classifiers. Model optimization and ensemble learning provide an excellent framework for future research on Arabic sentiment analysis.Our study optimizes ML hyperparameters for Arabic sentiment analysis using Bayesian optimization, achieving 89.7% accuracy - a 6.2% improvement over baseline models. The method particularly enhances performance on dialectal Arabic content.
 
 Keywords: Sentiment Analysis, Machine Learning, Hyperparameter Optimization, Stacking Ensemble.
 
 DOI: Under Indexing
 
 Download: PDF
 
 
 References:
M. A. Hassonah, R. Al-Sayyed, A. Rodan, A. Al-Zoubi, I. Aljarah, and H. Faris, “An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on Twitter,” Knowl.-Based Syst., vol. 192, p. 105353, 2020.
M. Tubishat, M. A. M. Abushariah, N. Idris, and I. Aljarah, “Improved whale optimization algorithm for feature selection in Arabic sentiment analysis,” Appl. Intell., vol. 49, no. 5, pp. 1688–1707, May 2019, doi: 10.1007/s10489-018-1334-8.
I. Guellil, F. Azouaou, and M. Mendoza, “Arabic sentiment analysis: studies, resources, and tools,” Soc. Netw. Anal. Min., vol. 9, no. 1, p. 56, Dec. 2019, doi: 10.1007/s13278-019-0602-x.
T. N. Prakash and A. Aloysius, “A comparative study of lexicon based and machine learning based classifications in sentiment analysis,” Int. J. Data Min. Tech. Appl., vol. 8, no. 1, pp. 43–47, 2019.
A. Singh et al., “Smart traffic monitoring through real-time moving vehicle detection using deep learning via aerial images for consumer application,” IEEE Trans. Consum. Electron., vol. 70, no. 4, pp. 7302–7309, Nov. 2024, doi: 10.1109/TCE.2024.3445728.
M. E. M. Abo, R. G. Raj, and A. Qazi, “A review on Arabic sentiment analysis: state-of-the-art, taxonomy and open research challenges,” IEEE Access, vol. 7, pp. 162008–162024, 2019, doi: 10.1109/ACCESS.2019.2951530.
I. Gupta and N. Joshi, “Enhanced Twitter sentiment analysis using hybrid approach and by accounting local contextual semantic,” J. Intell. Syst., vol. 29, no. 1, pp. 1611–1625, Dec. 2019, doi: 10.1515/jisys-2019-0106.
P. Rani, U. C. Garjola, and H. Abbas, “A predictive IoT and cloud framework for smart healthcare monitoring using integrated deep learning model,” NJF Intell. Eng. J., vol. 1, no. 1, pp. 53–65, 2024.
M. Hijjawi and Y. Elsheikh, “Arabic language challenges in text based conversational agents compared to the English language,” Int. J. Comput. Sci. Inf. Technol., vol. 7, no. 3, pp. 1–13, Jun. 2015, doi: 10.5121/ijcsit.2015.7301.
N. E. Aoumeur, Z. Li, and E. M. Alshari, “Improving the polarity of text through word2vec embedding for primary classical Arabic sentiment analysis,” Neural Process. Lett., vol. 55, no. 3, pp. 2249–2264, Jun. 2023, doi: 10.1007/s11063-022-11111-1.
N. V. Devi and R. Ponnusamy, “A systematic survey of natural language processing (NLP) approaches in different systems,” Int. J. Comput. Sci. Eng., vol. 4, no. 7, 2016. [Online]. Available: https://www.researchgate.net/publication/322465983.
P. Rani, S. P. Yadav, P. N. Singh, and M. Almusawi, “Real-world case studies: transforming mental healthcare with natural language processing,” in Demystifying the Role of Natural Language Processing (NLP) in Mental Health, A. Mishra, S. P. Yadav, M. Kumar, S. M. Biju, and G. C. Deka, Eds. IGI Global, 2025, pp. 303–324, doi: 10.4018/979-8-3693-4203-9.ch016.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for Arabic sentiment analysis,” Informatics, vol. 8, no. 4, p. 79, Nov. 2021, doi: 10.3390/informatics8040079.
A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understanding microblogging usage and communities,” in Proc. 9th WebKDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis, San Jose, CA: ACM, Aug. 2007, pp. 56–65, doi: 10.1145/1348549.1348556.
B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury, “Micro-blogging as online word of mouth branding,” in CHI ’09 Extended Abstracts on Human Factors in Computing Systems, Boston, MA: ACM, Apr. 2009, pp. 3859–3864, doi: 10.1145/1520340.1520584.
P. Rani, D. S. Mohan, S. P. Yadav, G. K. Rajput, and M. A. Farouni, “Sentiment analysis and emotional recognition: enhancing therapeutic interventions,” in Demystifying the Role of Natural Language Processing (NLP) in Mental Health, A. Mishra, S. P. Yadav, M. Kumar, S. M. Biju, and G. C. Deka, Eds. IGI Global, 2025, pp. 283–302, doi: 10.4018/979-8-3693-4203-9.ch015.
B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using machine learning techniques,” in Proc. ACL-02 Conf. Empirical Methods in Natural Language Processing (EMNLP), 2002, pp. 79–86, doi: 10.3115/1118693.1118704.
P. D. Turney, “Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews,” in Proc. 40th Annu. Meeting Assoc. Comput. Linguistics (ACL), Philadelphia, PA, 2001, p. 417, doi: 10.3115/1073083.1073153.
A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,” CS224N Project Report, Stanford Univ., vol. 1, no. 12, 2009.
L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent Twitter sentiment classification,” in Proc. 49th Annu. Meeting Assoc. Comput. Linguistics: Human Language Technologies, 2011, pp. 151–160. [Online]. Available: https://aclanthology.org/P11-1016.pdf.
L. Zhang, R. Ghosh, M. Dekhil, M. Hsu, and B. Liu, “Combining lexicon-based and learning-based methods for Twitter sentiment analysis,” HP Lab. Tech. Rep., vol. 89, pp. 1–8, 2011.
P. Rani, S. Verma, S. P. Yadav, B. K. Rai, M. S. Naruka, and D. Kumar, “Simulation of the lightweight blockchain technique based on privacy and security for healthcare data for the cloud system,” Int. J. E-Health Med. Commun. (IJEHMC), vol. 13, no. 4, pp. 1–15, 2022.
B. Pang and L. Lee, “A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts,” arXiv preprint, arXiv:cs/0409058, Sep. 2004, doi: 10.48550/arXiv.cs/0409058.
B. Liu, Sentiment Analysis and Opinion Mining. Springer Nature, 2022. [Online]. Available: https://books.google.com/books?id=xYhyEAAAQBAJ.
H. Nguyen, A. Veluchamy, M. Diop, and R. Iqbal, “Comparative study of sentiment analysis with product reviews using machine learning and lexicon-based approaches,” SMU Data Sci. Rev., vol. 1, no. 4, p. 7, 2018.
A. Bhatt, A. Patel, H. Chheda, and K. Gawande, “Amazon review classification and sentiment analysis,” Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 6, pp. 5107–5110, 2015.
T. K. Shivaprasad and J. Shetty, “Sentiment analysis of product reviews: a review,” in Proc. Int. Conf. Inventive Communication and Computational Technologies (ICICCT), IEEE, 2017, pp. 298–301. [Online]. Available: https://ieeexplore.ieee.org/document/7975207.
P. Rani and R. Sharma, “Intelligent transportation system for Internet of Vehicles based vehicular networks for smart cities,” Comput. Electr. Eng., vol. 105, p. 108543, 2023.
P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning, “Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data,” Ecol. Model., vol. 406, pp. 109–120, Aug. 2019, doi: 10.1016/j.ecolmodel.2019.06.002.
F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated Machine Learning: Methods, Systems, Challenges. Cham: Springer, 2019, doi: 10.1007/978-3-030-05318-5.
G. Ansari, P. Rani, and V. Kumar, “A novel technique of mixed gas identification based on the group method of data handling (GMDH) on time-dependent MOX gas sensor data,” in Proc. Int. Conf. Recent Trends in Computing (ICRTC), Springer, 2023, pp. 641–654.
S. Andradóttir, “An overview of simulation optimization via random search,” in Handbooks in Operations Research and Management Science, vol. 13, Elsevier, 2006, pp. 617–631, doi: 10.1016/S0927-0507(06)13020-0.
Y. Xu and R. Goodacre, “On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning,” J. Anal. Test., vol. 2, no. 3, pp. 249–262, Jul. 2018, doi: 10.1007/s41664-018-0068-2.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.
Y. Wang, Z. Zhou, S. Jin, D. Liu, and M. Lu, “Comparisons and selections of features and classifiers for short text classification,” IOP Conf. Ser. Mater. Sci. Eng., vol. 261, p. 012018, Oct. 2017, doi: 10.1088/1757-899X/261/1/012018.
“Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics Proteomics, vol. 15, no. 1, Jan. 2018, doi: 10.21873/cgp.20063.
G. Biau and E. Scornet, “A random forest guided tour,” TEST, vol. 25, no. 2, pp. 197–227, Jun. 2016, doi: 10.1007/s11749-016-0481-7.
 |  
	
		|  
  
			    HOME 
			- Conference - Journal
 - Paper Submission to Journal
 - Paper Submission to Conference
 - For Authors
 - For Reviewers
 - Important Dates
 - Conference Committee
 - Editorial Board
 - Reviewers
 - Last Proceedings
 
			-
            Volume 13, Issue 3 (ICAIIT 2025) PROCEEDINGS
 -
            Volume 13, Issue 2 (ICAIIT 2025)
 -
            Volume 13, Issue 1 (ICAIIT 2025)
 -
            Volume 12, Issue 2 (ICAIIT 2024)
 -
            Volume 12, Issue 1 (ICAIIT 2024)
 -
            Volume 11, Issue 2 (ICAIIT 2023)
 -
            Volume 11, Issue 1 (ICAIIT 2023)
 -
            Volume 10, Issue 1 (ICAIIT 2022)
 -
            Volume 9, Issue 1 (ICAIIT 2021)
 -
            Volume 8, Issue 1 (ICAIIT 2020)
 -
            Volume 7, Issue 1 (ICAIIT 2019)
 -
            Volume 7, Issue 2 (ICAIIT 2019)
 -
            Volume 6, Issue 1 (ICAIIT 2018)
 -
            Volume 5, Issue 1 (ICAIIT 2017)
 -
            Volume 4, Issue 1 (ICAIIT 2016)
 -
			Volume 3, Issue 1 (ICAIIT 2015)
 -
			Volume 2, Issue 1 (ICAIIT 2014)
 -
			Volume 1, Issue 1 (ICAIIT 2013)
 
			ICAIIT 2025 PAST CONFERENCES
 -
			Photos
 -
			Reports
 
 ICAIIT 2024
 -
			Photos
 -
			Reports
 
 ICAIIT 2023
 -
			Photos
 -
			Reports
 
 ICAIIT 2021
 -
			Photos
 -
			Reports
 
 ICAIIT 2020
 -
			Photos
 -
			Reports
 
 ICAIIT 2019
 -
			Photos
 -
			Reports
 
 ICAIIT 2018
 -
			Photos
 -
			Reports
   
			    ETHICS IN PUBLICATIONS
 ACCOMODATION
   
			    CONTACT US   |  |