Proceedings of International Conference on Applied Innovation in IT
2025/07/26, Volume 13, Issue 3, pp.1-9

Neural Network-Based Intelligent Routing for Secure VANET Communication


Wisal Jereis Alrabadi


Abstract: Transportation Systems (ITS), enabling seamless communication between vehicles and roadside infrastructure. This connectivity significantly enhances road safety, traffic efficiency, and overall driving enjoyment for users. However, router protocols in VANETs encounter substantial challenges due to the high mobility of vehicles and the rapid changes in network topologies. Traditional routing methods often suffer from delays and packet loss as a result of these dynamic conditions. To address these issues, we propose a novel algorithm that leverages machine learning techniques, specifically utilizing neural networks for intelligent routing in VANETs. This innovative approach dynamically optimizes routing decisions while also enhancing communication security. By effectively detecting and mitigating potential attacks, our algorithm improves routing efficiency, reduces communication delays, and strengthens data security. Simulation results indicate that our proposed system outperforms existing routing protocols, leading to improved network performance and a significant reduction in end-to-end delay, particularly in challenging scenarios such as black hole attacks.

Keywords: Vehicular Ad-Hoc Networks (VANETs), Neural Network-Based Routing, Intelligent Transportation Systems (ITS), Machine Learning, Network Security and Attacks.

DOI: Under Indexing

Download: PDF

References:

  1. P. Rani and R. Sharma, "Intelligent transportation system for internet of vehicles based vehicular networks for smart cities," Comput. Electr. Eng., vol. 105, p. 108543, 2023, [Online]. Available: https://doi.org/10.1016/j.compeleceng.2022.108543.
  2. P. Sathya Narayanan and C. S. Joice, "Vehicle-to-Vehicle (V2V) Communication using Routing Protocols: A Review," in 2019 International Conference on Smart Structures and Systems (ICSSS), Chennai, India: IEEE, Mar. 2019, pp. 1-10, [Online]. Available: https://doi.org/10.1109/ICSSS.2019.8882828.
  3. S. K., A. R. Deshmukh, and S. S. Dorle, "A Survey of Routing Protocols for Vehicular Ad-hoc Networks," Int. J. Comput. Appl., vol. 139, no. 13, pp. 34-37, Apr. 2016, [Online]. Available: https://doi.org/10.5120/ijca2016909541.
  4. L. L. Cardenas, A. M. Mezher, P. A. Barbecho Bautista, J. P. Astudillo Leon, and M. A. Igartua, "A Multimetric Predictive ANN-Based Routing Protocol for Vehicular Ad Hoc Networks," IEEE Access, vol. 9, pp. 86037-86053, 2021, [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3088474.
  5. K. N. Qureshi, F. Bashir, and A. H. Abdullah, "Provision of Security in Vehicular Ad Hoc Networks through an Intelligent Secure Routing Scheme," in 2017 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan: IEEE, Dec. 2017, pp. 200-205, [Online]. Available: https://doi.org/10.1109/FIT.2017.00043.
  6. N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong, and K. H. Chong, "A Comprehensive Survey on Vehicular Networking: Communications, Applications, Challenges, and Upcoming Research Directions," IEEE Access, vol. 10, pp. 86127-86180, 2022, [Online]. Available: https://doi.org/10.1109/ACCESS.2022.3198656.
  7. P. Rani and R. Sharma, "Intelligent Transportation System Performance Analysis of Indoor and Outdoor Internet of Vehicle (IoV) Applications Towards 5G," Tsinghua Sci. Technol., vol. 29, no. 6, pp. 1785-1795, Dec. 2024, [Online]. Available: https://doi.org/10.26599/TST.2023.9010119.
  8. T. Alladi, A. Agrawal, B. Gera, V. Chamola, B. Sikdar, and M. Guizani, "Deep Neural Networks for Securing IoT Enabled Vehicular Ad-Hoc Networks," in ICC 2021 - IEEE International Conference on Communications, Montreal, QC, Canada: IEEE, Jun. 2021, pp. 1-6, [Online]. Available: https://doi.org/10.1109/ICC42927.2021.9500823.
  9. A. Malik, M. Z. Khan, M. Faisal, F. Khan, and J.-T. Seo, "An Efficient Dynamic Solution for the Detection and Prevention of Black Hole Attack in VANETs," Sensors, vol. 22, no. 5, p. 1897, Feb. 2022, [Online]. Available: https://doi.org/10.3390/s22051897.
  10. Y. Qian and N. Moayeri, "Design of Secure and Application-Oriented VANETs," in VTC Spring 2008 - IEEE Vehicular Technology Conference, Marina Bay, Singapore: IEEE, May 2008, pp. 2794-2799, [Online]. Available: https://doi.org/10.1109/VETECS.2008.610.
  11. G. Kumar, R. Saha, M. K. Rai, and T.-H. Kim, "Multidimensional Security Provision for Secure Communication in Vehicular Ad Hoc Networks Using Hierarchical Structure and End-to-End Authentication," IEEE Access, vol. 6, pp. 46558-46567, 2018, [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2866759.
  12. S. A. Soleymani et al., "A Secure Trust Model Based on Fuzzy Logic in Vehicular Ad Hoc Networks With Fog Computing," IEEE Access, vol. 5, pp. 15619-15629, 2017, [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2733225.
  13. P. Rani and M. H. Falaah, "Real-Time Congestion Control and Load Optimization in Cloud-MANETs Using Predictive Algorithms," NJF Intell. Eng. J., vol. 1, no. 1, pp. 66-76, 2024.
  14. Z. Hassan, A. Mehmood, C. Maple, M. A. Khan, and A. Aldegheishem, "Intelligent Detection of Black Hole Attacks for Secure Communication in Autonomous and Connected Vehicles," IEEE Access, vol. 8, pp. 199618-199628, 2020, [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3034327.
  15. B. Karthiga, D. Durairaj, N. Nawaz, T. K. Venkatasamy, G. Ramasamy, and A. Hariharasudan, "Intelligent Intrusion Detection System for VANET Using Machine Learning and Deep Learning Approaches," Wirel. Commun. Mob. Comput., vol. 2022, pp. 1-13, Oct. 2022, [Online]. Available: https://doi.org/10.1155/2022/5069104.
  16. P. Rani and R. Sharma, "An experimental study of IEEE 802.11 n devices for vehicular networks with various propagation loss models," in International Conference on Signal Processing and Integrated Networks, Springer, 2022, pp. 125-135.
  17. S. Zeadally, M. A. Javed, and E. B. Hamida, "Vehicular Communications for ITS: Standardization and Challenges," IEEE Commun. Stand. Mag., vol. 4, no. 1, pp. 11-17, Mar. 2020, [Online]. Available: https://doi.org/10.1109/MCOMSTD.001.1900044.
  18. A. Rahim, P. K. Malik, and V. A. Sankar Ponnapalli, "State of the Art: A Review on Vehicular Communications, Impact of 5G, Fractal Antennas for Future Communication," in Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019), vol. 121, P. K. Singh, W. Pawłowski, S. Tanwar, N. Kumar, J. J. P. C. Rodrigues, and M. S. Obaidat, Eds., in Lecture Notes in Networks and Systems, vol. 121, Singapore: Springer Singapore, 2020, pp. 3-15, [Online]. Available: https://doi.org/10.1007/978-981-15-3369-3_1.
  19. S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, "An Anomaly Detection Model Based on Deep Auto-Encoder and Capsule Graph Convolution via Sparrow Search Algorithm in 6G Internet of Everything," IEEE Internet Things J., vol. 11, no. 18, pp. 29402-29411, Sep. 2024, [Online]. Available: https://doi.org/10.1109/JIOT.2024.3353337.
  20. P. Rani and R. Sharma, "IMFOCA-IOV: Intelligent Moth Flame Optimization based Clustering Algorithm for Internet of Vehicle," in 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE, 2023, pp. 1-6.
  21. A. M. Rahmani et al., "A Q-Learning and Fuzzy Logic-Based Hierarchical Routing Scheme in the Intelligent Transportation System for Smart Cities," Mathematics, vol. 10, no. 22, p. 4192, Nov. 2022, [Online]. Available: https://doi.org/10.3390/math10224192.
  22. M. N. Allawi, A. N. Hussain, M. K. Wali, and D. A. Pereira, "High Impedance Fault Detection in Distribution Feeder Based on Spectrum Analysis and ANN with Non-Linear Load", JT, vol. 6, no. 2, pp. 36-47, Jun. 2024.
  23. M. Saravanan and P. Ganeshkumar, "Routing using reinforcement learning in vehicular ad hoc networks," Comput. Intell., vol. 36, no. 2, pp. 682-697, May 2020, [Online]. Available: https://doi.org/10.1111/coin.12261.
  24. M. Ul Hassan et al., "ANN-Based Intelligent Secure Routing Protocol in Vehicular Ad Hoc Networks (VANETs) Using Enhanced AODV," Sensors, vol. 24, no. 3, p. 818, Jan. 2024, [Online]. Available: https://doi.org/10.3390/s24030818.
  25. Najwa Mohammed Jawad and Nahideh Derakhshanfard, "Assigning Optimal Multi-Objective Model in Cognitive Radio Networks", EETJ, vol. 2, no. 1, pp. 33-41, Jan. 2025.
  26. A. N. Upadhyaya and J. S. Shah, "AODV ROUTING PROTOCOL IMPLEMENTATION IN VANET," Int. J. Adv. Res. Eng. Technol., vol. 10, no. 2, Jun. 2019, [Online]. Available: https://doi.org/10.34218/IJARET.10.2.2019.055.
  27. N. Hussain, P. Rani, N. Kumar, and M. G. Chaudhary, "A deep comprehensive research architecture, characteristics, challenges, issues, and benefits of routing protocol for vehicular ad-hoc networks," Int. J. Distrib. Syst. Technol. IJDST, vol. 13, no. 8, pp. 1-23, 2022.
  28. A. Palma, P. R. Pereira, P. R. Pereira, and A. Casaca, "Multicast routing protocol for Vehicular Delay-Tolerant Networks," in 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain: IEEE, Oct. 2012, pp. 753-760, [Online]. Available: https://doi.org/10.1109/WiMOB.2012.6379160.
  29. X. Liu, "An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks," IEEE Sens. J., vol. 15, no. 6, pp. 3484-3491, Jun. 2015, [Online]. Available: https://doi.org/10.1109/JSEN.2014.2372340.
  30. D. Chou and M. Jiang, "A Survey on Data-driven Network Intrusion Detection," ACM Comput. Surv., vol. 54, no. 9, pp. 1-36, Dec. 2022, [Online]. Available: https://doi.org/10.1145/3472753.
  31. A. Adeel et al., "A multi-attack resilient, lightweight IoT authentication scheme," Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, p. e3676, Mar. 2022, [Online]. Available: https://doi.org/10.1002/ett.3676.
  32. P. Rani, U. C. Garjola, and H. Abbas, "A Predictive IoT and Cloud Framework for Smart Healthcare Monitoring Using Integrated Deep Learning Model," NJF Intell. Eng. J., vol. 1, no. 1, pp. 53-65, 2024.
  33. A. Khurshid, A. N. Khan, F. G. Khan, M. Ali, J. Shuja, and A. U. R. Khan, "Secure-CamFlow: A device-oriented security model to assist information flow control systems in cloud environments for IoTs," Concurr. Comput. Pract. Exp., vol. 31, no. 8, p. e4729, Apr. 2019, [Online]. Available: https://doi.org/10.1002/cpe.4729.
  34. D. Singh and B. Singh, "Investigating the impact of data normalization on classification performance," Appl. Soft Comput., vol. 97, p. 105524, Dec. 2020, [Online]. Available: https://doi.org/10.1016/j.asoc.2019.105524.
  35. D. M. W. Powers, “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation,” J. Mach. Learn. Technol., vol. 2, pp. 37–63, 2011, doi: 10.9735/2229-3981.


    HOME

       - Conference
       - Journal
       - Paper Submission to Journal
       - Paper Submission to Conference
       - For Authors
       - For Reviewers
       - Important Dates
       - Conference Committee
       - Editorial Board
       - Reviewers
       - Last Proceedings


    PROCEEDINGS

       - Volume 13, Issue 3 (ICAIIT 2025)
       - Volume 13, Issue 2 (ICAIIT 2025)
       - Volume 13, Issue 1 (ICAIIT 2025)
       - Volume 12, Issue 2 (ICAIIT 2024)
       - Volume 12, Issue 1 (ICAIIT 2024)
       - Volume 11, Issue 2 (ICAIIT 2023)
       - Volume 11, Issue 1 (ICAIIT 2023)
       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


    PAST CONFERENCES

       ICAIIT 2025
         - Photos
         - Reports

       ICAIIT 2024
         - Photos
         - Reports

       ICAIIT 2023
         - Photos
         - Reports

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports

    ETHICS IN PUBLICATIONS

    ACCOMODATION

    CONTACT US

 

        

         Proceedings of the International Conference on Applied Innovations in IT by Anhalt University of Applied Sciences is licensed under CC BY-SA 4.0


                                                   This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


           ISSN 2199-8876
           Publisher: Edition Hochschule Anhalt
           Location: Anhalt University of Applied Sciences
           Email: leiterin.hsb@hs-anhalt.de
           Phone: +49 (0) 3496 67 5611
           Address: Building 01 - Red Building, Top floor, Room 425, Bernburger Str. 55, D-06366 Köthen, Germany

        site traffic counter

Creative Commons License
Except where otherwise noted, all works and proceedings on this site is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.